

EOS AM-1 Mission Operations Review

FLIGHT DYNAMICS

AND
MARK WOODARD

Goddard Space Flight Center Greenbelt, MD 20771 USA

EOS AM-1 Mission Operations Review

ORBIT (MANEUVER AND NAVIGATION)

LAURI KRAFT NEWMAN Flight Dynamics Division

Goddard Space Flight Center/Code 552 Greenbelt, MD 20771 USA E-mail: lauri.newman@gsfc.nasa.gov

Mission Overview

- Launch: June 1998 (duration: 5 year; goal: 6 years)
- Launch vehicle: Atlas II AS
- Orbit
 - Frozen
 - Sun-synchronous, 98.2-degree inclination
 - Repeat cycle: 233 revolutions per 16 days
 - 705-km mean altitude over Equator
 - 10:30 a.m. (±15 minutes) descending node mean local time (MLT)
 - ±20-km ground track control at Equator
 - +10/-5-km radial constraint

Launch/Acquisition Phase Operations

Prelaunch Phase Days: Pre 1 Launch/ Acquisition Phase Days: 1 - 9 Checkout Phase Days 9=>

Early Mission Operation Day 1 Rev 0
Go to Internal Power (L-5:00)
Liftoff (L)
Fairing Jettison (L+3:12)
S-Band Transmitter On (L+7:00)
Launch Vehicle Separation (L+14:00)
Earth Acquisition (L+14:00 - 30:00)
MOPITT Power Commands (L + 15:00)
Solar Array Deployment (L + 16:00 - 32:00)
Command Link Establishment (L + 24:00)
HGA/Instrument Power Commands (L+35:00)
Array Rotation Commanding (L+ 58:00)

Transfer Orbit Operations Days 1 -3
MODIS Power Enabled
HGA Deployment
HGA Gimbal Checkout
HGA Communications Check out
Playback Launch Ascent Telemetry
Propellant Gauging
Orbit elements and stored commands for HGA pointing

Constellation Flying With Landsat 7

- Interproject Agreement (IPA) between AM-1 and Landsat 7 signed in April 1996
- Agreement to fly same ground track such that both spacecraft view the same area within 15 minutes to 1 hour (as close to 15 minutes as possible)
- Separation within orbit required to fly same ground track is dictated by orbit plane MLT separation
- MLT separation is determined by launch times
- Impacts timing of ascent maneuvers
- All active constellation maintenance will be performed by Landsat 7
- No impact to EOS AM-1 fuel budget

Constellation Flying With Landsat 7 (Cont'd)

EOS AM-1 Launch

- Launch window
 - Daily opportunity
 - Approximately 20-minute window each day
 - Atlas II AS guidance capabilities allow optimizing inclination for launch time to eliminate inclination maintenance
- Higher transfer orbit due to performance margin release
 - As spacecraft mass matures, final transfer orbit altitude will be determined; current estimate is perigee height of 650 km, although current baseline is 550 km
 - Higher transfer orbit means fewer opportunities to synch up with Landsat-7 during spacecraft checkout period

Maneuver Plan

- Plan to perform ground track maintenance maneuvers periodically
 - As frequently as once every 2 weeks for high solar flux
 - As infrequently as once every 6 months for low solar flux
- Not expecting to perform inclination maintenance
 - Fuel budget includes removing Atlas II AS dispersions plus one maneuver at end of life (EOL) in case mission is extended
 - Initial inclination will be chosen to allow MLT to remain within 10:30 ±15-minute control box throughout mission lifetime

Orbit Determination

- Using TONS
- Orbit solution comes down in telemetry in science and housekeeping packets
- Small gaps in data will be repaired by Science Data Processing Segment (SDPS) using Flight Dynamics Division (FDD)supplied algorithm
- Large gaps will be definitively filled by FDD on request
- Position knowledge requirement is 150 meters per axis, 30
- Actual performance expected to be 5 to 10 meters, 1σ
 - Based on new analysis (previous expectation was 20 meters)
 - Assumes no solar storms

EOS AM-1 Mission Operations Review

ATTITUDE

MARK WOODARD Flight Dynamics Division

Goddard Space Flight Center/Code 552 Greenbelt, MD 20771 USA E-mail: mark.woodard@gsfc.nasa.gov

Attitude Orientation

Nominally, the spacecraft is aligned with the local vertical, local horizontal (LVLH) frame:

- Y is along the negative orbit normal vector
- Z is along nadir vector
- X is defined to complete the right-hand coordinated system

Sensors

- One Inertial Reference Unit (IRU)
- Two Three-Axis Magnetometers (TAMs)
- Two Earth Sensor Assemblies (ESAs)
- One Fine Sun Sensor (FSS)
- Two Solid State Star Trackers (SSSTs)
- One Coarse Sun Sensor (CSS) Assembly

Star Catalog

- SKYMAP Master Catalog will be used to generate EOS AM-1 mission catalog
- Star selection criteria still being worked with Lockheed Martin, McDonnell Douglas Astronautics (MDA)
- Final mission catalog will consist of approximately 700 "equally distributed" stars
- FDD plans to deliver initial star catalog last quarter CY96

Star Selection Criteria

- Instrumental magnitudes between 2.0 and 5.7
- No stars included with proper motion greater than 0.7 arcsecond per year
- No stars included with position uncertainty greater than 0.6 arc-second
- "Near-neighbor" stars will be flagged

Attitude Maneuver Plan

- Attitude maneuvers will be required during L&EO for
 - Instrument calibration
 - IRU calibration
 - FSS field of view calibration
- Additional maneuvers may be required during normal mission phase to maintain attitude determination requirements
- Detailed maneuver timeline will be worked with project and FOT personnel

Sensor Calibration Plan

- Calibration includes
 - SSST alignment matrixes and scale factors
 - FSS alignment matrix and field of view (FOV) calibration parameters
 - IRU alignment matrix and scale factors
- Preliminary calibration handbook available end of 1997

EOS AM-1 Mission Operations Review

FLIGHT DYNAMICS SYSTEMS AND OPERATIONS CONCEPT

LAURI KRAFT NEWMAN Flight Dynamics Division

Goddard Space Flight Center/Code 552 Greenbelt, MD 20771 USA E-mail: lauri.newman@gsfc.nasa.gov

L&EO Operations Concept

- FDD personnel provide support until early spacecraft checkout complete
 - Maneuver planning and calibration
 - Orbit determination and TONS checkout
 - Attitude determination and verification
 - Star catalog update, if needed
 - Sensor calibration
 - Product generation
- Support provided from Flight Dynamics Facility (FDF) in Building 28
- Support will be 24 hours during critical periods
- Liaison personnel will be available in EOC to operate FDD workstations and train FOT

L&EO Operations Concept

- FDD hands over all functions to FOT or Code 500 support contractor after spacecraft checkout
- FDD will provide
 - Necessary software and hardware
 - Training to FOT
 - Documentation of procedures and system operation

Routine Operations

- FOT provides routine operations support
- FDD on call for contingency, anomaly resolution, and special operations

Staffing Plan

L&EO

- Two 12-hour operations shifts
- Prime shift (centered around orbit and attitude maneuvers)
 - » In EOC: one products engineer
 - » In Flight Dynamics Operations Area: one lead attitude engineer, one attitude engineer, one lead orbit engineer, one orbit engineer, two OD engineers
- Off shift
 - » In EOC: one attitude engineer, one orbit engineer
- Routine operations
 - Staffing provided by FOT
 - Maneuver planning, TONS monitoring, and master oscillator monitoring provided by Code 500 contractor support
 - FDD will provide consultation on request

FDD System Concept

Interfaces

- EOC (Bldg 32)
 - All Flight Dynamics deliverables made available to EOC
 - Telemetry from EOC made available to FDD
- FDD (Bldg 28)
 - Code 500 contractor support tasks
 - L&EO support

FDD System Concept (Cont'd)

Interfaces (cont'd)

- FOT
 - Responsible for all Flight Dynamics functions in EOC after spacecraft checkout
 - Flight Dynamics personnel responsible for training FOT personnel during prelaunch and early mission phases
- SDPS
 - Repaired orbit data, as needed

FDD System Concept (Cont'd)

Support Hardware in EOC

- Two Hewlett-Packard UNIX workstations
 - One prime; one backup
 - Products: Real-Time Attitude Determination System (RTADS), Attitude Determination System (ADS), calibration, planning products, quality assurance (QA) tool
- Two Sun UNIX workstations
 - One prime; one backup
 - Product: TONS Ground Support System (TGSS)
- Two Pentium Pro PCs with Windows NT
 - One prime; one backup
 - Products: maneuver planning, ephemeris generation
- Cabling connectivity within EOC (Bldg 32)

Contractor Interfaces

- FDD will perform the following functions via Code 500 contractor tasks:
 - Launch vehicle support
 - Tracking data evaluation and local oscillator frequency calculations
 - Star catalog generation
 - On-orbit maneuver support
 - Sensor calibrations
 - TDRS orbit determination
 - Spacecraft orbit determination before TONS is operational

Operational Scenarios: Real-Time Attitude

Legend:

AHF – attitude history file

EOC – EOS Operations Center

FDF – Flight Dynamics Facility

FOT – Flight Operations Team

GUI – graphical user interface

H/K – housekeeping

IST – Instrument Support Terminal

NL – namelist

OBC – onboard computer

SLP – solar/lunar/planetary

Performed by FDD during L&EO and by FOT during routine operations

Operational Scenarios: Offline Attitude Validation

Legend:

ADS – Attitude Determination System

AGSS – Attitude Ground Support System

AHF – attitude history file

DA – data adjuster

EOC – EOS Operations Center

FDF – Flight Dynamics Facility

NL – namelist

SCC – spacecraft control computer

SLP – solar/lunar/planetary

Files from IST for non-real-time data:

- Carry out format
- Standing order request of FOT
- $-FOT\ generate$
- Frequency set by FDF
- Content/mnemonics set by FDF

Performed by FDD during L&EO and by FOT during routine operations for contingencies (automated process)

Operational Scenarios: Attitude Calibration

Legend:

AGSS – Attitude Ground Support System

ALI – alignment

CAL - calibration

FOV - field of view

IRU – inertial reference unit

NL – namelist

SLP-solar/lunar/planetary

Performed by FDD during L&EO and by FDD and Code 500 contractor during routine operations (no FOT requirement)

Operational Scenarios: Orbit (TONS)

TGSS Sequence Prior to TONS Initialization

(Orbit Elements Frequency Control Word & Doppler Evaluation)

Legend:

EDS – engineering data set

EOC – EOS Operations Center

FCW - frequency control word

GTDS – Goddard Trajectory Determination System

H/K – housekeeping

TDRS - Tracking and Data Relay Satellite

TGSS – TONS Ground Support System

TONS - TDRSS Onboard Navigation System

XDPR - transponder

10034213W

Performed by FDD during L&EO and by FDD contractor during contingencies (no FOT requirement)

Operational Scenarios: Orbit (TONS) (Cont'd)

TGSS Sequence After TONS Initialization

(TONS Performance Evaluation)

Legend:

EDS - engineering data set

EOC – EOS Operations Center

FCW - frequency control word

FSW - flight software

GTDS – Goddard Trajectory Determination System

H/K – housekeeping

IST - Instrument Support Terminal

TDRS - Tracking and Data Relay Satellite

TGSS – TONS Ground Support System

T®NS™ TDRSS Onboard Navigation System

Performed by FDD during L&EO and by FDD contractor during routine operations (no FOT requirement)

Operational Scenarios: Maneuver Planning

Legend:

EOC – EOS Operations Center

OD – orbit determination

SLP – solar/lunar/planetary

TIMCOF – time coefficient

Performed by FDD during L&EO and by FDD contractor during routine operations

Operational Scenarios: Maneuver Calibration

Legend:

EOC – EOS Operations Center

OD – orbit determination

Performed by FDD during L&EO and by FDD contractor during routine operations

Operational Scenarios: Product Generation

Legend:

EOC – EOS Operation Center

GUI – graphical user interface

KFTP – Kerberos File Transfer Protocol

NL – namelist

SAA – South Atlantic Anomaly

SLP – solar/lunar/planetary

STK – satellite toolkit

TGSS – TONS Ground Support System

TONS – TDRSS Onboard Navigation System

Performed by FDD during L&EO and by FOT during routine operations

Detailed Mission Requirements (DMR) Compliance

All requirements will be met

- Orbit software
 - Evaluation software for onboard navigation
 - Tracking data preprocessor
- Maneuver software
 - Maneuver planning
 - Orbit prediction
- Attitude determination software
 - RTADS
 - ADS
 - Calibrator
- Mission planning product generation software
 - Mission planning and scheduling products
 - Interference and visibility predictions
 - Acquisition data generation

EOS AM-1 Mission Operations Review

BACKUP SLIDES

Constellation Flying With Landsat 7 (Cont'd)

MEAN LOCAL TIME VARIATION FOR EOS-AM AND LANDSAT-7 Nominal Case

Constellation Flying With Landsat 7 (Cont'd)

Table 1: Opportunities for EOS-AM1 to catch Landsat-7 During 30-Day Ascent Phase

AM1	Mean	Relative	Relative	Relative	Worst Case #	# of
Injection	Motion	Mean Motion	Mean	Mean	of days to	opportunities
Orbit	(°/min)	(°/min)	Motion	Motion	catch	during 30-day
Perigee	<u> </u>		(°/orbit)	(°/day)	Landsat-7	ascent period
550	3.701	0.061	6.0	87.2	4.1	7
600	3.682	0.041	4.0	59.0	6.1	5
650	3.662	0.021	2.0	30.2	11.9	2
700	3.643	0.002	0.2	2.9	125	0
705	3.641	0.000	0.0	0.0	N/A	0

Figure 2(a): EOS-AM1 before Landsat-7

